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D E S C R I P T I O N  OF T H E  C R E E P  A N D  FAILURE OF B E A M S  

IN B E N D I N G  A N D  S H A F T S  IN T O R S I O N  BY E Q U A T I O N S  

W I T H  A S C A L A R  D A M A G E  P A R A M E T E R  

B. V. Gorev  and  I. D. K l o p o t o v  UDC 539.374+376 

Results of the theoretical and experimental investigations of beam bending by a constant mo- 
ment and torsion of continuous shafts with a constant rate of the torsion angle are given. It is 
shown that the kinetic equations of creep and damage with a scalar parameter can be applied 
to the description of deformation in the presence of nonuniform stresses. 

Gorev and Klopotov [1] specified the determining equations of creep with a scalar damage parameter; 
this makes it possible to determine this parameter from experimental tension-compression and torsion data. 
It was established that the processes of damage accumulation in tension and in compression are different for 
materials with different creep resistances. 

In the present paper, we show the applicability of the equations of creep and damage [1] to the descrip- 
tion of deformation at nonuniform stresses with the use of calculations and comparison with experimental 
data on pure bending of rectangular beams and torsion of continuous shafts from an AK4-1T alloy. 

1. B e n d i n g  of  B e a m s  by  a C o n s t a n t  Moment .  We consider pure bending of a rectangular beam 
of width b and height h under the action of a constant external moment M. Assuming that at an arbitrary 
point of the beam, the total strain is composed of elastic and creep strains at any moment of time and using 
the hypothesis of plane sections, from the equations of equilibrium 

hi2 h/2 

b / a z d z = M ,  / a d z = O  

-h/2 -h/2 

we find the curvature of the beam ~e, the neutral-line shift 5, and the stress a acting at the point located at 
the distance z from the middle surface: 

h/2 

= - U )  + -J eC zdz ;  (1) 
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5 = ---eehl / r dz; (2) 

-hi2 

a = E ~ ( z  - ~) - EE  c, (3) 
where E is Young's modulus of the material and J = bh3/12 is the centroidal moment of inertia of the beam 
cross section. 
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Substi tut ing the  stress expression (3) into the equations of creep and damage  for pure bending of the 

dA BA(exp ~'cr 2 -- 1) /~A(exp ~cr 2 -- 1) 
d--~" = (1 - w) m v~(a) + (1 - w) '~' ~9(-a) ,  

&o B~(expf la  2 - 1) /?~,(exp/)a 2 - 1) 
d-7 = (i - 0 ( ~  + (1  - -  

(4) 

we obtain  a system of three integrodifferential equations for A, w, and E c. In Eqs. (4), we have d A / d t  = 

(d~C/dt) or, tg(x) -- 1 for x > 0, and zg(x) = 0 for x ~< 0; BA, ~, m,  B,~, and fl and /)A, ~, r-n, /),~, and fl are 
the tension and compression characteristics, respectively. 

As done in [2], we divide the beam cross section over its height and approximate  the integrals by finite 

sums to obtain a s y s t e m  of first-order ordinary differential equations, which was solved by the Runge-Kut ta  

method.  The  calculat ions were performed for the AK4-1T characteristics given in Table 1 at 200~ [1]. The 
Young's  modulus was E = 60 GPa, the beam dimensions were 200 x 10 x 20 mm,  and the number of divisions 

through the beam was k = 64. The initial data  for t = 0 were E~ = Ak = wk = 0. 

The  solid curves and points in Fig. 1 refer to the theoretical and exper imental  values of ae = ~e(t), 
respectively, for three  values of the bending moment .  The  maximum stresses at  zero t ime are amax(0) = 

264.87, 235.44, and 196.20 MPa  (curves 1-3, respectively).  The bending tests  were carried out until the 

failure occurred (the values of se. corresponding to the failure time t .  are asterisked). For the measurement 

base l0 = 100 mm,  the  beam curvature was calculated by the formula ee = 8 W / l  2 with the use of the 
experimental ly  measured  deflection W. 

Figure 2a shows diagrams of the stresses in the beam cross section which were calculated for the 

moment s  of t ime t = 0, 61, 181, and 601 h (curves 1-4, respectively) in the exper iment  with am~(0) = 

235.44 MPa.  One can see tha t  the stresses are redistr ibuted over the cross section with  t ime and at the moment 
before failure, the s t re tched  fibers of the beam stop resisting the deformation. The  damage  distribution over 

the beam height is shown in Fig. 2b at various moments  of time. As can be seen, the damages  in the stretched 

region of the beam are accumulated more intensively, which leads to failure of the beam in this region. 
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Figure 3 shows the distribution of the work of dissipation in creep over the cross section in the ex- 
periment with amax(0) = 264.87 MPa at the moments  t = 20.5, 200, and 240 h (curves 1-3). It should be 
noted tha t  the work of dissipation in the s tretched and compressed fibers (located symmetrical ly relative to 
the middle surface) is almost the same, whereas the degree of damage of these fibers differs significantly. 

It was established experimentally and supported by calculations that ,  for materials with different 
tensile and compression properties, the failure during pure bending begins in the border  fiber subjected to 

tension. 
2. T o r s i o n  o f  S h a f t s  w i t h  a C o n s t a n t  R a t e  of  t h e  T o r s i o n  A n g l e .  In s tudying the torsion 

of a continuous shaft, we assume that the cross sections remain plane and the radial fibers remain straight. 
Then, we have only the nonzero shear strain in the cylindrical coordinates, ~ /=  2E~= = Or. We specify the 
rate of the torsion angle 8 per unit length of the shaft such that the stresses along the radius r do not exceed 
the elastic limit at any moment  of time, i.e., as for the beam, we assume tha t  the strain is composed of the 

elastic and creep components  

-~ = r / c  + ~c, (~) 

where G is the shear modulus. Differentiating (5) with respect to time, we obtain the following equation for 
calculating the shear-stress rate ~- over the shaft  radius depending on the shear-strain ra te  of creep and the 

specified rate  of the torsion angle ~c 

d_7 = G (St - ~/c). (6) 
dt 
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The shear-strain rate is determined by the kinetic equations of creep and damage with a scalar pa- 
rameter,  and the coefficients of the equations for pure torsion were determined by the procedure outlined in 
[1]. The  experiments were carried out  on continuous round specimens of diameter  20 mm and working length 
40 mm which were subjected to constant torque. To determine the true failure strains, we used continuous 
specimens, since in the tests on thin-walled specimens, at high levels of stresses, when the shear strains attain 
10% and greater, one can observe the geometrical buckling of the thin-walled samples before failure. 

The  experimental data  for continuous specimens were processed by the method of characteristic pa- 
rameters [3, 4]. In torsion of a continuous specimen, the stresses redistributed. However, there exists a 
sufficiently small region where the material behavior can be described by the equations of uniaxial stress 
state r -- 7 [3, 4]. This region is the vicinity of a point with the coordinate at the characteristic point of 
intersection of the elastic- and "steady'-stress diagrams 

§ = ( J l p / & p : / ( n - l ) .  (7) 
R 

Jnp = 27: / p2+W'~dp'is the generalized polar moment of inertia of the cross section, n is the creep index, Here 

0 

and R is the radius of the specimen. 

In practice, the stress at the characteristic point does not change under  s ta t ionary loading conditions 
and remains equal to the initial stress, i.e., to the elastic value up to failure. The  calculations and experiments 
show tha t  the coordinate § is almost independent of the value of the external  torque and the material 
properties [3-6]. 

In accordance with the theoretically and experimentally substantiated method,  the curves of uniaxial 
deformation (diagrams) are plotted for the values of the shear stresses and shear  strains at the characteristic 
point ~ = (M/Wlp)(§ and ~ /=  0~, where Wlp is the torsional elastic moment  of resistance. 

When the creep index is unknown (as in the case considered), the point of intersection of the diagrams 
for elastic and ideally plastic states (n ~ oc) can be used with sufficient accuracy [5, 6] as the characteristic 
point. In this case, we have ~ = 3R/4 and the expressions for ~/ and ~ and, hence, for gi and &i, take the 
following form: ~/= 30R/4, {- = 3A/I/(4Wlp), gi = v'30R/4, and ~i = v@~. 

The  points in Fig. 4 show experimental values of the work of dissipation versus the time ii(t) at the 
characteristic point (the asterisks refer to the moment of failure) for torsion of continuous round specimens 
from AK4-1T at 250~ which were subjected to the constant moment. Curves 1-7 refer to the following 
stress intensities at the characteristic point: ai = 23o, 210, 200, 190, 180, 170, and 160 MPa. The solid 
curves show the approximation of the deformation curves by a power law: 

1141 



dA B A a n dw B~aki 
d--t----- ( 1 -  w) m' d--t" = (1 -w)  m' (8) 

where BA =- 2.79 �9 10 -40 MPa  1-~ �9 sec -1, n -= 16, m = 2, B~ = 3.39 �9 10 -31 MPa -k �9 sec -1, k = 11.5, and 
G = 17 GPa. 

The determining equations (8) can be combined with (6) to give the system of differential equations 
for solving the formulated problem: 

dT = G ( O  r (V/3)nBATn-1), &o (V'~)kB~T k 
d--[ - - ( 1 - - - -~  d t -  (1 -a~ )  m 

As for the beam, calculations were performed by the Runge - - K u t t a  method with a variable integration 
step; the number of the points of division from the axis along the shaft radius was equal to 32. As the initial 
conditions for t = 0, we set r = 0 and w = 0. Calculations were performed for continuous shafts having the 
above-mentioned dimensions for two constant  rates of the torsion angle. 

The points in Fig. 5a refer to experimental data  for M = M(0), and the curves to theoretical relations 
for the rate of the torsion angle t) = 1.14.10 -5 and 1.08- 10 -6 r ad / (mm,  sec) (curves I and II, respectively). 

Figure 5b shows diagrams of the shear stresses along the radius of the shaft at the moments of time 
t = 50, 102, 1.5- 102, 3 �9 102, 9- 102, and 1.5 �9 10 a sec (curves 1-6) for t~ = 1.08.10 -6 rad / (mm .sec). 

The satisfactory agreement between the calculated and experimental values for the stationary and non- 
stat ionary regimes of loading in tests on beam bending and shaft torsion up to failure shows the applicability 
of the equations of creep and damage with the same index of loss of s trength m in both equations to the 
description of deformation in the presence of nonuniform stresses. 
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